Decomposing Federated Queries in presence of Replicated Fragments

Gabriela Montoya, Hala Skaf-Molli, Pascal Molli, Maria-Esther Vidal


Federated query engines allow for linked data consumption using SPARQL endpoints. Replicating data fragments from dierent sources enables data re-organization and provides the basis for more eective and ecient federated query processing. However, existing federated query engines are not designed to support replication. In this paper, we propose a replication-aware framework named LILAC, sparqL query decomposItion against federations of repLicAted data sourCes, that relies on replicated fragment descriptions to accurately identify sources that provide replicated data. We dened the query decomposition problem with fragment replication (QDP-FR). QDP-FR corresponds to the problem of nding the sub-queries to be sent to the endpoints that allows the federated query engine to compute the query answer, while the number of tuples to be transferred from endpoints to the federated query engine is minimized. An approximation of QDP-FR is implemented by the LILAC replication-aware query decomposition algorithm. Further, LILAC techniques have been included in the state-of-the-art federated query engines FedX and ANAPSID to evaluate the benets of the proposed source selection and query decomposition techniques in dierent engines. Experimental results suggest that LILAC eciently

Full Text: Untitled
Type of Paper: Research Paper
Keywords: Linked Data, Federated Query Processing, Query Decomposition, Fragment Replication
Show BibTex format: BibTeX